poolChain是poolDequeue的动态大小版本,本质上也是个双向链表,特别之处在于,它每次出队的元素个数是前一次出队的两倍。一旦出队满了m
// poolChain is a dynamically-sized version of poolDequeue.
//
// This is implemented as a doubly-linked list queue of poolDequeues
// where each dequeue is double the size of the previous one. Once a
// dequeue fills up, this allocates a new one and only ever pushes to
// the latest dequeue. Pops happen from the other end of the list and
// once a dequeue is exhausted, it gets removed from the list.
type poolChain struct {
// head is the poolDequeue to push to. This is only accessed
// by the producer, so doesn't need to be synchronized.
head *poolChainElt
// tail is the poolDequeue to popTail from. This is accessed
// by consumers, so reads and writes must be atomic.
tail *poolChainElt
}
type poolChainElt struct {
poolDequeue
// next and prev link to the adjacent poolChainElts in this
// poolChain.
//
// next is written atomically by the producer and read
// atomically by the consumer. It only transitions from nil to
// non-nil.
//
// prev is written atomically by the consumer and read
// atomically by the producer. It only transitions from
// non-nil to nil.
next, prev *poolChainElt
}
func storePoolChainElt(pp **poolChainElt, v *poolChainElt) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(pp)), unsafe.Pointer(v))
}
func loadPoolChainElt(pp **poolChainElt) *poolChainElt {
return (*poolChainElt)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(pp))))
}
func (c *poolChain) pushHead(val interface{}) {
d := c.head
if d == nil {
// Initialize the chain.
const initSize = 8 // Must be a power of 2
d = new(poolChainElt)
d.vals = make([]eface, initSize)
c.head = d
storePoolChainElt(&c.tail, d)
}
if d.pushHead(val) {
return
}
// The current dequeue is full. Allocate a new one of twice
// the size.
newSize := len(d.vals) * 2
if newSize >= dequeueLimit {
// Can't make it any bigger.
newSize = dequeueLimit
}
d2 := &poolChainElt{prev: d}
d2.vals = make([]eface, newSize)
c.head = d2
storePoolChainElt(&d.next, d2)
d2.pushHead(val)
}
func (c *poolChain) popHead() (interface{}, bool) {
d := c.head
for d != nil {
if val, ok := d.popHead(); ok {
return val, ok
}
// There may still be unconsumed elements in the
// previous dequeue, so try backing up.
d = loadPoolChainElt(&d.prev)
}
return nil, false
}
func (c *poolChain) popTail() (interface{}, bool) {
d := loadPoolChainElt(&c.tail)
if d == nil {
return nil, false
}
for {
// It's important that we load the next pointer
// *before* popping the tail. In general, d may be
// transiently empty, but if next is non-nil before
// the pop and the pop fails, then d is permanently
// empty, which is the only condition under which it's
// safe to drop d from the chain.
d2 := loadPoolChainElt(&d.next)
if val, ok := d.popTail(); ok {
return val, ok
}
if d2 == nil {
// This is the only dequeue. It's empty right
// now, but could be pushed to in the future.
return nil, false
}
// The tail of the chain has been drained, so move on
// to the next dequeue. Try to drop it from the chain
// so the next pop doesn't have to look at the empty
// dequeue again.
if atomic.CompareAndSwapPointer((*unsafe.Pointer)(unsafe.Pointer(&c.tail)), unsafe.Pointer(d), unsafe.Pointer(d2)) {
// We won the race. Clear the prev pointer so
// the garbage collector can collect the empty
// dequeue and so popHead doesn't back up
// further than necessary.
storePoolChainElt(&d2.prev, nil)
}
d = d2
}
}