sync.Pool的作用
一般地,对于一些频繁创建-销毁对象的场景,为了降低GC的压力,会将使用完的对象缓存起来,而不是直接让GC给回收掉。在golang中,提供了sync.Pool
这个类,很方便地让我们实现对一个对象的复用
sync.Pool的用法
pool的用法十分简单,只需要在声明pool对象的时候给入New函数,New函数可以让我们自定义需要生成一个什么对象
type Fool struct {}
pool := sync.Pool{
New: func() interface{} {
return new(Fool)
}
}
foo := pool.Get().(*Fool)
pool.Put(foo)
sync.Pool的底层结构
让我们打开源码,一窥pool的底层实现原理
/usr/local/go/src/sync/pool.go
type Pool struct {
noCopy noCopy
local unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal
localSize uintptr // size of the local array
victim unsafe.Pointer // local from previous cycle
victimSize uintptr // size of victims array
// New optionally specifies a function to generate
// a value when Get would otherwise return nil.
// It may not be changed concurrently with calls to Get.
New func() interface{}
}
从注释上我们可以看出,local
其实是一个数组,类型为[P]poolLocal
, 而数组的长度就是当前P(MPG模型里的P)的数量,所以,对应每一个P,Pool里都有一个poolLocal的本地池,由于P一个时刻只能和一个M绑定,所以访问poolLocal时,可以做到无锁访问。localSize
的值也就明显是P的数量。
victim
和 victimSize
咋一看,完全看不出来设计思路,不急,我们先看看两个成员函数的实现。
Get操作
先从Get方法入手,查看一个对象是如何从池中给到我们的
// Get selects an arbitrary item from the Pool, removes it from the
// Pool, and returns it to the caller.
// Get may choose to ignore the pool and treat it as empty.
// Callers should not assume any relation between values passed to Put and
// the values returned by Get.
//
// If Get would otherwise return nil and p.New is non-nil, Get returns
// the result of calling p.New.
func (p *Pool) Get() interface{} {
if race.Enabled {
race.Disable()
}
l, pid := p.pin()
x := l.private
l.private = nil
if x == nil {
// Try to pop the head of the local shard. We prefer
// the head over the tail for temporal locality of
// reuse.
x, _ = l.shared.popHead()
if x == nil {
x = p.getSlow(pid)
}
}
runtime_procUnpin()
if race.Enabled {
race.Enable()
if x != nil {
race.Acquire(poolRaceAddr(x))
}
}
if x == nil && p.New != nil {
x = p.New()
}
return x
}
- 利用p.pin(),将当前的goroutine固定在P上,并且了禁用了抢占,同时得到来poolLocal
- 检查poolLocal的private是否为空,不为空则会被拿来用
- 当private为空,会从shared的头部获取一个元素
- 如果还是获取不到,则会去其他P的对象池里拿元素
func (c *poolChain) popHead() (interface{}, bool) {
d := c.head
for d != nil {
if val, ok := d.popHead(); ok {
return val, ok
}
// There may still be unconsumed elements in the
// previous dequeue, so try backing up.
d = loadPoolChainElt(&d.prev)
}
return nil, false
}
- 从head指向的poolDequeue中获取元素
func (p *Pool) getSlow(pid int) interface{} {
// See the comment in pin regarding ordering of the loads.
size := runtime_LoadAcquintptr(&p.localSize) // load-acquire
locals := p.local // load-consume
// Try to steal one element from other procs.
for i := 0; i < int(size); i++ {
l := indexLocal(locals, (pid+i+1)%int(size))
if x, _ := l.shared.popTail(); x != nil {
return x
}
}
// Try the victim cache. We do this after attempting to steal
// from all primary caches because we want objects in the
// victim cache to age out if at all possible.
size = atomic.LoadUintptr(&p.victimSize)
if uintptr(pid) >= size {
return nil
}
locals = p.victim
l := indexLocal(locals, pid)
if x := l.private; x != nil {
l.private = nil
return x
}
for i := 0; i < int(size); i++ {
l := indexLocal(locals, (pid+i)%int(size))
if x, _ := l.shared.popTail(); x != nil {
return x
}
}
// Mark the victim cache as empty for future gets don't bother
// with it.
atomic.StoreUintptr(&p.victimSize, 0)
return nil
}
- 尝试从其他P的shared池中获取元素
func (c *poolChain) popTail() (interface{}, bool) {
d := loadPoolChainElt(&c.tail)
if d == nil {
return nil, false
}
for {
// It's important that we load the next pointer
// *before* popping the tail. In general, d may be
// transiently empty, but if next is non-nil before
// the pop and the pop fails, then d is permanently
// empty, which is the only condition under which it's
// safe to drop d from the chain.
d2 := loadPoolChainElt(&d.next)
if val, ok := d.popTail(); ok {
return val, ok
}
if d2 == nil {
// This is the only dequeue. It's empty right
// now, but could be pushed to in the future.
return nil, false
}
// The tail of the chain has been drained, so move on
// to the next dequeue. Try to drop it from the chain
// so the next pop doesn't have to look at the empty
// dequeue again.
if atomic.CompareAndSwapPointer((*unsafe.Pointer)(unsafe.Pointer(&c.tail)), unsafe.Pointer(d), unsafe.Pointer(d2)) {
// We won the race. Clear the prev pointer so
// the garbage collector can collect the empty
// dequeue and so popHead doesn't back up
// further than necessary.
storePoolChainElt(&d2.prev, nil)
}
d = d2
}
}
将poolLocal
的结构摆开,看看里面有什么
type poolLocal struct {
poolLocalInternal
// Prevents false sharing on widespread platforms with
// 128 mod (cache line size) = 0 .
pad [128 - unsafe.Sizeof(poolLocalInternal{})%128]byte
}
// Local per-P Pool appendix.
type poolLocalInternal struct {
private interface{} // Can be used only by the respective P.
shared poolChain // Local P can pushHead/popHead; any P can popTail.
}
- poolLocalInternal上的private是P私有的,在Get的时候会被优先获取
- shared是个双向队列,本地的P能从head处插入及获取元素,而其余的P只能拿尾部的内容
下面打开poolChain
的结构
// poolChain is a dynamically-sized version of poolDequeue.
//
// This is implemented as a doubly-linked list queue of poolDequeues
// where each dequeue is double the size of the previous one. Once a
// dequeue fills up, this allocates a new one and only ever pushes to
// the latest dequeue. Pops happen from the other end of the list and
// once a dequeue is exhausted, it gets removed from the list.
type poolChain struct {
// head is the poolDequeue to push to. This is only accessed
// by the producer, so doesn't need to be synchronized.
head *poolChainElt
// tail is the poolDequeue to popTail from. This is accessed
// by consumers, so reads and writes must be atomic.
tail *poolChainElt
}
type poolChainElt struct {
poolDequeue
// next and prev link to the adjacent poolChainElts in this
// poolChain.
//
// next is written atomically by the producer and read
// atomically by the consumer. It only transitions from nil to
// non-nil.
//
// prev is written atomically by the consumer and read
// atomically by the producer. It only transitions from
// non-nil to nil.
next, prev *poolChainElt
}
可以看出poolChain
本身是个双端队列,持有着队列的head和tail两个指针,而poolChain队列里的每个Item则是个poolDequeue(环形队列),我们知道poolDequeue是固定长度的,但poolChain又是动态长度的,poolChain通过双向链表的形式将poolDequeue串起来使用。
Put操作
来看sync.Pool的Put操作
// Put adds x to the pool.
func (p *Pool) Put(x interface{}) {
if x == nil {
return
}
if race.Enabled {
if fastrand()%4 == 0 {
// Randomly drop x on floor.
return
}
race.ReleaseMerge(poolRaceAddr(x))
race.Disable()
}
l, _ := p.pin()
if l.private == nil {
l.private = x
x = nil
}
if x != nil {
l.shared.pushHead(x)
}
runtime_procUnpin()
if race.Enabled {
race.Enable()
}
}
- 一样地,将当前的P和Goroutine固定住
- 检查poolLocal的private是否为空,为空则赋值上回收的对象
- 如果x没被private回收,则投放到shared中
func (c *poolChain) pushHead(val interface{}) {
d := c.head
if d == nil {
// Initialize the chain.
const initSize = 8 // Must be a power of 2
d = new(poolChainElt)
d.vals = make([]eface, initSize)
c.head = d
storePoolChainElt(&c.tail, d)
}
if d.pushHead(val) {
return
}
// The current dequeue is full. Allocate a new one of twice
// the size.
newSize := len(d.vals) * 2
if newSize >= dequeueLimit {
// Can't make it any bigger.
newSize = dequeueLimit
}
d2 := &poolChainElt{prev: d}
d2.vals = make([]eface, newSize)
c.head = d2
storePoolChainElt(&d.next, d2)
d2.pushHead(val)
}
- poolChain执行pushHead时,如果poolChain还是空的,则初始化一个size为8的poolDequeue
- 将回收的元素放入head指向的poolDequeue中
- 如果head指向的poolDequeue已满了,则创建一个新的poolDequeue,并且缓冲区大小为原来的两倍
- 将新建的poolDequeue插入头部
sync.Pool中的元素什么时候被回收
GC时
func init() {
runtime_registerPoolCleanup(poolCleanup)
}
在sync.Pool的init中,注册了GC的Hook
func poolCleanup() {
// This function is called with the world stopped, at the beginning of a garbage collection.
// It must not allocate and probably should not call any runtime functions.
// Because the world is stopped, no pool user can be in a
// pinned section (in effect, this has all Ps pinned).
// Drop victim caches from all pools.
for _, p := range oldPools {
p.victim = nil
p.victimSize = 0
}
// Move primary cache to victim cache.
for _, p := range allPools {
p.victim = p.local
p.victimSize = p.localSize
p.local = nil
p.localSize = 0
}
// The pools with non-empty primary caches now have non-empty
// victim caches and no pools have primary caches.
oldPools, allPools = allPools, nil
}
总结
- 关键思想是对象的复用,避免重复创建、销毁。减轻 GC 的压力。
- sync.Pool 是协程安全的
- 不要对 Get 得到的对象有任何假设,默认Get到对象是一个空对象,Get之后手动初始化。
- 好的实践是:Put操作执行前将对象“清空”,并且确保对象被Put进去之后不要有任何的指针引用再次使用
- Pool 里对象的生命周期受 GC 影响,不适合于做连接池,因为连接池需要自己管理对象的生命周期。
- Pool 不可以指定⼤⼩,⼤⼩只受制于 GC 临界值。
- procPin 将 G 和 P 绑定,防止 G 被抢占。在绑定期间,GC 无法清理缓存的对象。
- sync.Pool 的设计理念,包括:无锁、操作对象隔离、原子操作代替锁、行为隔离——链表、Victim Cache 降低 GC 开销。
细节备注
// pin pins the current goroutine to P, disables preemption and
// returns poolLocal pool for the P and the P's id.
// Caller must call runtime_procUnpin() when done with the pool.
func (p *Pool) pin() (*poolLocal, int) {
// 将goroutine固定里p上,并拿到里p的id
pid := runtime_procPin()
// In pinSlow we store to local and then to localSize, here we load in opposite order.
// Since we've disabled preemption, GC cannot happen in between.
// Thus here we must observe local at least as large localSize.
// We can observe a newer/larger local, it is fine (we must observe its zero-initialized-ness).
s := runtime_LoadAcquintptr(&p.localSize) // load-acquire
l := p.local // load-consume
if uintptr(pid) < s {
return indexLocal(l, pid), pid
}
return p.pinSlow()
}
runtime_procPin方法实际上是对应以下函数
//go:linkname sync_runtime_procPin sync.runtime_procPin
//go:nosplit
func sync_runtime_procPin() int {
return procPin()
}
//go:nosplit
func procPin() int {
_g_ := getg() // 获取了当前的G
mp := _g_.m
mp.locks++ // 这里M的locks自增
return int(mp.p.ptr().id)
}